Dynamic partnership between KCNQ1 and KCNE1 and influence on cardiac IKs current amplitude by KCNE2.

نویسندگان

  • Min Jiang
  • Xulin Xu
  • Yuhong Wang
  • Futoshi Toyoda
  • Xian-Sheng Liu
  • Mei Zhang
  • Richard B Robinson
  • Gea-Ny Tseng
چکیده

Cardiac slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits. Although KCNE1 is an obligate IKs component that confers the uniquely slow gating kinetics, KCNE2 is also expressed in human heart. In vitro experiments suggest that KCNE2 can associate with the KCNQ1-KCNE1 complex to suppress the current amplitude without altering the slow gating kinetics. Our goal here is to test the role of KCNE2 in cardiac IKs channel function. Pulse-chase experiments in COS-7 cells show that there is a KCNE1 turnover in the KCNQ1-KCNE1 complex, supporting the possibility that KCNE1 in the IKs channel complex can be substituted by KCNE2 when the latter is available. Biotinylation experiments in COS-7 cells show that although KCNE1 relies on KCNQ1 coassembly for more efficient cell surface expression, KCNE2 can independently traffic to the cell surface, thus becoming available for substituting KCNE1 in the IKs channel complex. Injecting vesicles carrying KCNE1 or KCNE2 into KCNQ1-expressing oocytes leads to KCNQ1 modulation in the same manner as KCNQ1+KCNEx (where x=1 or 2) cRNA coinjection. Thus, free KCNEx peptides delivered to the cell membrane can associate with existing KCNQ1 channels to modulate their function. Finally, adenovirus-mediated KCNE2 expression in adult guinea pig ventricular myocytes exhibited colocalization with native KCNQ1 protein and reduces the native IKs current density. We propose that in cardiac myocytes the IKs current amplitude is under dynamic control by the availability of KCNE2 subunits in the cell membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the structural basis for differential KCNQ1 modulation by KCNE1 and KCNE2

KCNE1 associates with KCNQ1 to increase its current amplitude and slow the activation gating process, creating the slow delayed rectifier channel that functions as a "repolarization reserve" in human heart. The transmembrane domain (TMD) of KCNE1 plays a key role in modulating KCNQ1 pore conductance and gating kinetics, and the extracellular juxtamembrane (EJM) region plays a modulatory role by...

متن کامل

Adult Ventricular Myocytes Segregate KCNQ1 and KCNE1 to Keep the IKs Amplitude in Check Until When Larger IKs Is Needed.

BACKGROUND KCNQ1 and KCNE1 assemble to form the slow delayed rectifier (IKs) channel critical for shortening ventricular action potentials during high β-adrenergic tone. However, too much IKs under basal conditions poses an arrhythmogenic risk. Our objective is to understand how adult ventricular myocytes regulate the IKs amplitudes under basal conditions and in response to stress. METHODS AN...

متن کامل

The cardiac IKs channel, complex indeed.

T he cardiac IKs channel is a major repolarization current in the heart that responds rapidly and robustly to sympathetic nervous system stimulation to ensure adequate diastolic filling time in the face of accompanying accelerated heart rate. In cardiac myocytes, the IKs channel is a macromolecular complex composed of a poreforming α (KCNQ1) subunit and modulatory β (KCNE1) subunit, as well as ...

متن کامل

Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations.

The slow IKS K+ channel plays a major role in repolarizing the cardiac action potential and consists of the assembly of KCNQ1 and KCNE1 subunits. Mutations in either KCNQ1 or KCNE1 genes produce the long-QT syndrome, a life-threatening ventricular arrhythmia. Here, we show that long-QT mutations located in the KCNQ1 C terminus impair calmodulin (CaM) binding, which affects both channel gating a...

متن کامل

Cellular Biology Long QT Syndrome–Associated Mutations in KCNQ1 and KCNE1 Subunits Disrupt Normal Endosomal Recycling of IKs Channels

Physical and emotional stress is accompanied by release of stress hormones such as the glucocorticoid cortisol. This hormone upregulates the serumand glucocorticoid-inducible kinase (SGK)1, which in turn stimulates IKs, a slow delayed rectifier potassium current that mediates cardiac action potential repolarization. Mutations in IKs channel (KCNQ1, KvLQT1, Kv7.1) or (KCNE1, IsK, minK) subunits ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 24  شماره 

صفحات  -

تاریخ انتشار 2009